find the derivative of (cosx)^(sinx) wrt (sinx)^(cosx)
Answers
Answered by
0
Answer:
(sinx^sinx/cosx^cosx)cotx
Step-by-step explanation:
u=cosx^sinx
v=sinx^cosx
du/dv
=(du/dt)(dt/dv)
du/dt=-(sinx^sinx)*(cosx)
dv/dt=-(cosx^cosx)*(sinx)
deviding both, we get
du/dv=(sinx^sinx/cosx^cosx)cotx
Similar questions