Math, asked by rishikesh5717, 4 months ago

Find the derivative of

sin+cos / sin−cos .​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  \frac{ \sin(x)  +  \cos(x) }{ \sin(x)  -  \cos(x) }  \\

Differentiating both sides w.r.t x,

 \frac{dy}{dx}  =  \frac{ ( \sin(x)  -  \cos(x) )\frac{d}{dx}( \sin(x)  +  \cos(x) )  - ( \sin(x)  +  \cos(x))  \frac{d}{dx} ( \sin(x)  -  \cos(x)  ) }{( \sin(x)  -  \cos(x))^{2}  }  \\

 \implies \frac{dy}{dx} =  \frac{ - ( \sin(x)  -  \cos(x) )^{2}  + ( \sin(x) +  \cos(x) )^{2}  }{( \sin(x) -  \cos(x)  )^{2} }  \\

  \implies \frac{dy}{dx}  =  \frac{4 \sin(x)  \cos(x) }{1 - 2 \sin(x) \cos(x)  }  \\

 \implies \frac{dy}{dx}  =  \frac{2 \sin(2x) }{1 -  \sin(2x) }  \\

Similar questions