History, asked by zaman576, 7 months ago

Find the derivative of. y= log e sin x​

Answers

Answered by Anonymous
3

Given :-

• Function

 \tt \: y =  log_{e}(x)  \times  \sin \: x

To Find :-

• We have to find the derivative of the given function.

Formula to be used :-

\sf\:\dfrac{d(uv)}{dx}  =u\dfrac{dv}{dx}+v\dfrac{du}{dx}

Solution :-

Let \sf\:u. be =\log_{e}\:x

Where,

v = Sinx

y = u × v

Now, differentiate with respect to x :-

 \tt \dfrac{dy}{dx} =  \sin \: x \times  \dfrac{  d\log_{e}(x)}{dx}  +   \log_{e}(x)  \times  \dfrac{ d\sin \: x}{dx}

 \implies \tt \dfrac{dy}{dx}  =  \sin \: x \times  \dfrac{1}{x}  + log_{e}(x)  \times  \cos \: x

 \implies \tt \dfrac{dy}{dx}  =  \dfrac{ \sin \:x}{x} + \log_{e}(x) \times  \cos \: x

Similar questions