Math, asked by rajinianegoni, 9 months ago

if cosec tetha 1 = sec theta 2 then show that theta 1 + theta 2 =90 degrees​

Answers

Answered by abhishekranjan95087
0

1. (1 – cos2 A) cosec2 A = 1

Solution:

Taking the L.H.S,

(1 – cos2 A) cosec2 A

= (sin2 A) cosec2 A [∵ sin2 A + cos2 A = 1 ⇒1 – sin2 A = cos2 A]

= 12

= 1 = R.H.S

– Hence Proved

2. (1 + cot2 A) sin2 A = 1

Solution:

By using the identity,

cosec2 A – cot2 A = 1 ⇒ cosec2 A = cot2 A + 1

Taking,

L.H.S = (1 + cot2 A) sin2 A

= cosec2 A sin2 A

= (cosec A sin A)2

= ((1/sin A) × sin A)2

= (1)2

= 1

= R.H.S

– Hence Proved

3. tan2 θ cos2 θ = 1 − cos2 θ

Solution:

We know that,

sin2 θ + cos2 θ = 1

Taking,

L.H.S = tan2 θ cos2 θ

= (tan θ × cos θ)2

= (sin θ)2

= sin2 θ

= 1 – cos2 θ

= R.H.S

– Hence Proved

4. cosec θ √(1 – cos2 θ) = 1

Solution:

Using identity,

sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ

Taking L.H.S,

L.H.S = cosec θ √(1 – cos2 θ)

= cosec θ √( sin2 θ)

= cosec θ x sin θ

= 1

= R.H.S

– Hence Proved

5. (sec2 θ − 1)(cosec2 θ − 1) = 1

Solution:

Using identities,

(sec2 θ − tan2 θ) = 1 and (cosec2 θ − cot2 θ) = 1

We have,

L.H.S = (sec2 θ – 1)(cosec2θ – 1)

= tan2θ × cot2θ

= (tan θ × cot θ)2

= (tan θ × 1/tan θ)2

= 12

= 1

= R.H.S

– Hence Proved

6. tan θ + 1/ tan θ = sec θ cosec θ

Solution:

We have,

L.H.S = tan θ + 1/ tan θ

= (tan2 θ + 1)/ tan θ

= sec2 θ / tan θ [∵ sec2 θ − tan2 θ = 1]

= (1/cos2 θ) x 1/ (sin θ/cos θ) [∵ tan θ = sin θ / cos θ]

= cos θ/ (sin θ x cos2 θ)

= 1/ cos θ x 1/ sin θ

= sec θ x cosec θ

= sec θ cosec θ

= R.H.S

– Hence Proved

7. cos θ/ (1 – sin θ) = (1 + sin θ)/ cos θ

Solution:

We know that,

sin2 θ + cos2 θ = 1

So, by multiplying both the numerator and the denominator by (1+ sin θ), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 1

L.H.S =

= R.H.S

– Hence Proved

8. cos θ/ (1 + sin θ) = (1 – sin θ)/ cos θ

Solution:

We know that,

sin2 θ + cos2 θ = 1

So, by multiplying both the numerator and the denominator by (1- sin θ), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 2

L.H.S =

= R.H.S

– Hence Proved

9. cos2 θ + 1/(1 + cot2 θ) = 1

Solution:

We already know that,

cosec2 θ − cot2 θ = 1 and sin2 θ + cos2 θ = 1

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 3

= cos2 A + sin2 A

= 1

= R.H.S

– Hence Proved

10. sin2 A + 1/(1 + tan 2 A) = 1

Solution:

We already know that,

sec2 θ − tan2 θ = 1 and sin2 θ + cos2 θ = 1

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 4

= sin2 A + cos2 A

= 1

= R.H.S

– Hence Proved

11.

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 5

Solution:

We know that, sin2 θ + cos2 θ = 1

Taking the L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 6

= R.H.S

– Hence Proved

12. 1 – cos θ/ sin θ = sin θ/ 1 + cos θ

Solution:

We know that,

sin2 θ + cos2 θ = 1

So, by multiplying both the numerator and the denominator by (1+ cos θ), we get

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 7

= R.H.S

– Hence Proved

13. sin θ/ (1 – cos θ) = cosec θ + cot θ

Solution:

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 8

= cosec θ + cot θ

= R.H.S

– Hence Proved

14. (1 – sin θ) / (1 + sin θ) = (sec θ – tan θ)2

Solution:

Taking the L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 9

= (sec θ – tan θ)2

= R.H.S

– Hence Proved

15. R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 10

Solution:

Taking L.H.S,

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 11

= cot θ

= R.H.S

– Hence Proved

16. tan2 θ − sin2 θ = tan2 θ sin2 θ

Solution:

Taking L.H.S,

L.H.S = tan2 θ − sin2 θ

R D Sharma Solutions For Class 10 Maths Chapter 6 Trigonometric Identities ex 6.1 - 12

= tan2 θ sin2 θ

= R.H.S

– Hence Proved

17. (cosec θ + sin θ)(cosec θ – sin θ) = cot2θ + cos2θ

Solution:

Taking L.H.S = (cosec θ + sin θ)(cosec θ – sin θ)

On multiplying we get,

= cosec2 θ – sin2 θ

= (1 + cot2 θ) – (1 – cos2 θ) [Using cosec2 θ − cot2 θ = 1 and sin2 θ + cos2 θ = 1]

= 1 + cot2 θ – 1 + cos2 θ

= cot2 θ + cos2 θ

= R.H.S

– Hence Proved

18. (sec θ + cos θ) (sec θ – cos θ) = tan2 θ + sin2 θ

Solution:

Taking L.H.S = (sec θ + cos θ)(sec θ – cos θ)

On multiplying we get,

= sec2 θ – sin2 θ

= (1 + tan2 θ) – (1 – sin2 θ) [Using sec2 θ − tan2 θ = 1 and sin2 θ + cos2 θ = 1]

= 1 + tan2 θ – 1 + sin2 θ

= tan 2 θ + sin 2 θ

= R.H.S

– Hence Proved

19. sec A(1- sin A) (sec A + tan A) = 1

Solution:

Taking L.H.S = sec A(1 – sin A)(sec A + tan A)

Substituting sec A = 1/cos A and tan A =sin A/cos A in the above we have,

L.H.S = 1/cos A (1 – sin A)(1/cos A + sin A/cos A)

= 1 – sin2 A / cos2 A [After taking L.C.M]

= cos2 A / cos2 A [∵ 1 – sin2 A = cos2 A]

= 1

= R.H.S

– Hence Proved

20. (cosec A – sin A)(sec A – cos A)(tan A + cot A) = 1

Solution:

Taking L.H.S = (cosec A – sin A)(sec A – cos A)(tan A + cot A)

Similar questions