Math, asked by kumarghoshabhijit, 2 months ago

find the derivative with respect to x :-x^x^2+a^x^2
solve it
irrelevant answers will be reported ​

Answers

Answered by richapariya121pe22ey
1

Answer:

Step-by-step explanation:

y=x^{x^{2}} +a^{x^{2}}\\Let\: x^2=u\\and\: \frac{du}{dx} = 2x\\\\Now,y = x^u + a^u\\\frac{dy}{dx} = \frac{d}{dx}x^{u} + \frac{d}{dx}a^{u}\\=( ux^{u-1} \times \frac{du}{dx}) + (a^u \times log a \times \frac{du}{dx})\\=(x^2 \times x^{x^2 - 1} \times 2x) + (a^{x^2} \times loga \times 2x)\\=(x^{x^2 -1 +2 +1 } \times 2) + (2xa^{x^2} \times loga)\\=2x^{x^2+2} +2xa^{x^2}  loga

Similar questions