Math, asked by shravyajain2003, 8 months ago

Find the derivatives of
I. 7 sec x+ 5 cos x
II. 5x^3-41

Answers

Answered by Anonymous
23

1st Question :-

Derivative of \underline{ \sf{7 \sec(x)  + 5 \cos(x)  }}

Solution:-

\sf{\implies \dfrac{ d }{dx} [ 7 \sec(x)  + 5 \cos(x) ] }

\sf{\implies \dfrac{ d }{dx} [ 7 \sec(x)]   + \dfrac{d}{dx} [ 5 \cos(x) ] }

\underline{\sf{\implies a. u(x) + b. v(x) = a. u'(x) + b. v'(x)} }

\sf{\implies 7. \dfrac{ d }{dx} [ \sec(x)]   + 5 . \dfrac{d}{dx} \cos(x) ] }

\underline{\sf{\implies \dfrac{ d }{dx} [  \sec(x) ] = \tan x . \sec x }}

\underline{\sf{\implies \dfrac{ d }{dx} [  \cos(x) ] = - \sin x  }}

\sf{\implies 7 \sec(x). \tan (x) + 5 ( - \sin x)  }

  • \underline{\underline{\sf{\implies 7 \sec(x). \tan (x) - 5 \sin x }} }

2nd Question :-

Derivative of \underline{ \sf{ 5 {x}^{3} -41  }}

Solution :-

\sf{\implies \dfrac{ d }{dx} [ 5 {x}^{3} - 41 ] }

\underline{\sf{\implies \dfrac{ d }{dx} [41] = 0  }}

\underline{\sf{\implies \dfrac{ d }{dx} [{x}^{n}] = n. {x}^{n-1} }}

\sf{\implies  [ 5 .3 {x}^{2} - 0 ] }

  • \underline{\underline{\sf{\implies  [ 15 {x}^{2}  ] }}}
Similar questions