find the distance between the points (a cos 45, 0)and (0, a cos 45)
Answers
Answered by
3
(Distance between two points)²=(x2-x1)²+(y2-y1)²
d²=(acos45-0)²+(0-acos45)²
d²=(acos45)²+(-acos45)²
d²=a²/2+a²/2
d²=a²
therefore, d=a
d²=(acos45-0)²+(0-acos45)²
d²=(acos45)²+(-acos45)²
d²=a²/2+a²/2
d²=a²
therefore, d=a
Answered by
0
By distance formula
√(x1-x2)^2+(y1-y2)^2
√(acos45°)^2 + (-acos45°)^2
√a^2cos^2 45 + a^2cos^2 45
√a^2 (2cos^2 45)
√a^2(2*(1/√2)^2
a√2*1/2
a√1 or a
√(x1-x2)^2+(y1-y2)^2
√(acos45°)^2 + (-acos45°)^2
√a^2cos^2 45 + a^2cos^2 45
√a^2 (2cos^2 45)
√a^2(2*(1/√2)^2
a√2*1/2
a√1 or a
Similar questions