Math, asked by hridayshetty33, 11 months ago

find the equation of the circle for tangent to 2x – 3y – 7= 0 at (2 – 1) and passes through (4 1).

Answers

Answered by stefangonzalez246
0

Equation of the circle is, (x-\frac{2}{5} )^2+(y+\frac{13}{5} )^2  = 128/25.

Given

To find the equation of the circle.

Let center of circle be (h,k).

Which is tangent to 2x-3y-7 = 0 at (2,-1) and it passes through (4,1).

Slope for the equation is,

                                         2x-3y-7=0

                                         y = mx + c

Comparing the above two equation,

                                        3y = 2x -7

                                          y = 2/3 x - 7/3

                      Where, m = 2/3

Its a perpendicular tangent with slope 2/3 is -3/2.

Circle passes through the point (4,1)

                      k+1 / h-2 = -3 /  2

                               3h+2k = 4  -----> (1)

Equation of circle is,

                                (x-h)^2+(y-k)^2 = (2-h)^2+(-1-k)^2

It passes through (4,1), (i.e.,)

                                (4-h)^2+(1-k)^2 = (2-h)^2+(-1-k)^2

                                   -8h+16-2k+1 = -4h+4+2k+1

                                           17-5 = 8h-4h+2k-2k

                                            4h - 4k = 12

                                            4(h-k) = 12

                                               h-k = 12/4      

                                               h-k = 3  -----> (2)

From (1) and (2), by solving

                        We get, h = 2/5   k = -13/5

                        (x-h)^2+(y-k)^2 = (2-h)^2+(-1-k)^2

                        (x-\frac{2}{5} )^2+(y+\frac{13}{5} )^2 = (2-\frac{2}{5} )^2+(-1+\frac{13}{5} )^2

                         (x-\frac{2}{5} )^2+(y+\frac{13}{5} )^2  = 128/25.

Therefore, equation of the circle is, (x-\frac{2}{5} )^2+(y+\frac{13}{5} )^2  = 128/25.

To learn more...

brainly.in/question/6535141                                                      

           

Similar questions