Math, asked by neetukumari111116, 4 months ago

find the equation of the line passing through the points (a cosalpha ,a sinalpha ) and ( a cosbeta ,a sinbeta) ​

Answers

Answered by lalitnit
1

Answer:

 \frac{y - a.sin \alpha }{x - a.cos \alpha }  =  \frac{a.sin \beta  - a.sin \ \alpha }{a.cos \beta  - a.cos \alpha }

\frac{y - a.sin \alpha }{x - a.cos \alpha }  =  \frac{sin \beta  - sin \ \alpha }{cos \beta  - cos \alpha }

y.cos \beta  - y.cos \alpha   \\ - a.sin \alpha .cos \beta  + a.sin \alpha .cos \alpha  \\  = x.sin \beta  - x.sin \alpha  \\  - a.cos \alpha .sin \beta  + a.cos \alpha .sin \alpha

x(sin \beta  - sin \alpha ) + y(cos \alpha  - cos \beta )  \\ + a.(sin \alpha .cos \beta  - sin \beta .cos \alpha ) = 0

Similar questions