English, asked by Anonymous, 4 months ago

Find the equivalent resistance for 20ohm 15ohm and 20ohm parallel conecetion​

Answers

Answered by ItzCaptonMack
1

\huge\mathtt{\fbox{\red{Answer✍︎}}}

GIVEN :-

Three resistors of 20Ω , 15Ω , 20Ω.

TO FIND :-

The equivalent resistance.

SOLUTION :-

Let R₁ be 20Ω R₂ be 15Ω R₃ be 20Ω.

Now as we know that , when the resistors are connected in parallel combination then their equivalent resistance is given by,

 \\  :  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =  \frac{1}{R_1}  +  \frac{1}{R_2}  +  \frac{1}{R_3}  + ... +  \frac{1}{R_n}  \\  \\  \\

  :  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =  \frac{1}{20}  +  \frac{1}{15}  +  \frac{1}{20}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{3 + 4 + 3}{60}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{10}{60}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{1}{6}  \\  \\  \\

:  \implies \displaystyle  \underline{ \boxed{\sf \bold{ \:  {R_{eq}}   =  6 \:  \Omega}}}

Answered by Rajeshwari8025
0

Answer:

GIVEN :-

Three resistors of 20Ω , 15Ω , 20Ω.

TO FIND :-

The equivalent resistance.

SOLUTION :-

Let R₁ be 20Ω R₂ be 15Ω R₃ be 20Ω.

Now as we know that , when the resistors are connected in parallel combination then their equivalent resistance is given by,

please refresh or try again

Similar questions