Math, asked by PragyaTbia, 1 year ago

Find the following integral : \int (1-x)\ \sqrt{x} \, dx

Answers

Answered by MaheswariS
1

\textbf{Given:}

\int\,(1-x)\sqrt{x}\,dx

=\int\,(\sqrt{x}-x\sqrt{x})\,dx

=\int\,(x^{\frac{1}{2}}-x^{\frac{3}{2}})\,dx

\text{Using the formula, we get}

\boxed{\bf\int\,x^n\,dx=\frac{x^{n+1}}{n+1}+c}

=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+c

=\frac{2}{3}x^{\frac{3}{2}}-\frac{2}{5}x^{\frac{5}{2}}+c

\therefore\int\,(1-x)\sqrt{x}\,dx=\frac{2}{3}x^{\frac{3}{2}}-\frac{2}{5}x^{\frac{5}{2}}+c

Find more:

1.Integrate of e^x sec x(1+tanx) dx

https://brainly.in/question/6040969

2.Integrate cos2x/(cosx+sinx)^2

https://brainly.in/question/833990

Answered by CharmingPrince
11

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

Find \:the\ following\ integral\ : \\ \int (1-x)\ \sqrt{x} \, dx

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Simplifying:}}}

\purple{\implies \int (1-x)\sqrt{x}\ dx}

\purple{\implies}\int (1-x)x^{\frac{1}{2}}dx

\purple{\implies}\int (x^{\frac{1}{2}} - x^{\frac{3}{2}})dx

\blue{\implies \int x^{\frac{1}{2}} dx - \int x^{\frac{3}{2}} dx}

\boxed{\red{\bold{Using\: property \: \int x^n dx = \displaystyle{\frac{x^{n+1}}{n+1}}}}}

\green{\implies \int x^{\frac{1}{2}} dx - \int x^{\frac{3}{2}} dx = \displaystyle{\frac{x^{\frac{1}{2} +1}}{\frac{1}{2}+1}} - \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1 }+c}

\green{\boxed{\implies {\boxed{\displaystyle{\frac{2x^{\frac{3}{2}}}{3}} - \frac{2x^{\frac{5}{2}}}{5} +c}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions