Math, asked by Anonymous, 1 year ago

Find the General Solution of the differential Equation.

Non - Homogeneous Differential Equation.

Using Integration

Question = (2x + y + 1)dx = (4x + 2y - 1)dy = 0

Answer = x + 2y + log(2x + y - 1) = c


Anonymous: Bhaiya meene 3rd time check kiya hee question. Check same hee bhaiya.
rakeshmohata: Aapka मतलब (2x +y +1)dx= (4x +2y - 5)dy = 0..
rakeshmohata: -1*
Anonymous: Bhaiya +1 he hee.
Anonymous: -1 nahi hee.
rakeshmohata: after dx either it will be + or -
rakeshmohata: - 5 के जगह - 1..
Anonymous: Na bhaiya. Yee question aap chood doo bhaiya. Dusare aur meere questions dekho na.
Anonymous: Mee monday ko aapni teacher see pucch luuga.
rakeshmohata: hmm..

Answers

Answered by rakeshmohata
3
Hope u like my process
======================

 =  > (2x + y + 1)dx  + (4x + 2y - 1)dy = 0 \\  \\  =  > (2x + y + 1)dx =  - (4x + 2y - 1)dy \\  \\  =  >  \frac{dy}{dx}  =  -  \frac{(2x + y) + 1}{2(2x + y) - 1}  \\  \\   \bf \: let \: 2x + y = z \\  \\  =  >  \frac{dy}{dx}  =  \frac{dz}{dx}  - 2 \\  \\  \bf  \:  \:  \:  \:  \:  \:  \:  \: \underline{now} \\  \\  =  >  \frac{dz}{dx}  - 2 =   - \frac{z + 1}{2z - 1 }  \\  \\  =  >  \frac{dz}{dx}  =  -  \frac{z + 1}{2z - 1}  + 2 =  \frac{3z - 3}{2z - 1}  \\  \\  =  >  \frac{2z - 1}{z - 1}  dz = 3dx \\  \\  =  >  \int \: (2 +  \frac{1}{z   - 1} )dz = 3 \int \: dx \\  \\  =  > 2 \int \: dz +  \int \frac{1}{z - 1} dz = 3 \int \: dx \\  \\  =  > 2z +  log(z - 1)  = 3x + c \\  \\  =  > 2(2x + y) +  log(2x + y - 1)  = 3x + c \\  \\  =  > 4x - 3x + 2y +  log(2x + y - 1)  = c \\  \\  =  >  \bf \: x + 2y +  log(2x + y - 1)  = c
____________________________
this is ur required general solution
_____________________________
Hope this is ur required answer

Proud to help you
Similar questions
Math, 1 year ago