Math, asked by Achuz5, 1 year ago

find the hcf of 221 and 13620 ...

class 10 question .

by Euclid's division lemma....

plz answer fast...

best answer brainlist

Answers

Answered by siddhartharao77
5
Given integers are 221 and 13620.

Here 13620 > 221.

Thus, After applying Euclid's division algorithm, we get:


(1) 

221)  13620 (61

         1326

         --------

              360

              221

         ------------

              139




(2) The remainder 139! = 0, we apply division lemma to 139 and 221, we get


139)  221  ( 1

         139

         -----

           82


(3) The remainder 82! = 0, we apply division lemma to 82 and 139, we get


82) 139 ( 1

      82

      ------
 
      57




(4) Consider the new divisor 82 and new remainder 57 and apply division, 

57) 82 ( 1

      57

      ---

       25



(5) Remainder 25! = 0, Consider divisor 57 and remainder 25 and apply division.


25)  57 ( 2

        50

        ---

          7





(6) Remainder 7! = 0, consider divisor 25 and remainder 7 and apply division.

7) 25 ( 3

    21

    ---

       4.



(7) Remainder 4! = 0, consider divisor 7 and remainder 4 and apply division.

4) 7 ( 1

    4

   ----

     3.




(8) Remainder 3! = 0, consider new divisor 4 and remainder 3 and apply division.


3) 4 ( 1

    3
 
   ----

     1 

      


(9) The remainder 1! = 0, consider divisor 3 and remainder 1 and apply division


1) 3 ( 3

   3

  ---

   0.



Since in the above division we got remainder as 0, therefore, 1 is the HCF of 221 and 13620.




 Hope this helps!

siddhartharao77: Gud luck!
siddhartharao77: Welcome :-)
siddhartharao77: :-)
Answered by yokeshps22
2

Answer:

up there is your correct answer

Attachments:
Similar questions