Math, asked by XOMIL, 1 year ago

FIND THE HCF USING EUCLID DIVISION LEMMA 1.) 88,121 AND 1331
2.) 38,78 AND 278
3.) 108 AND 45
4.) 40 AND 6

Answers

Answered by Anonymous
20

Answer:-

\tt{1)\:88, 121\:and\:1331}

\sf{a = bq + r}

=》 1331 = 121 × 11 + 0

---

=》 121 = 88 × 1 + 33

=》 88 = 33 × 2 + 22

=》 33 = 22 × 1 + 11

=》 22 = 11 × 2 + 0

\mathfrak{HCF=11}

-----

\tt{2)\:38, 78\:and\: 278}

\sf{a = bq + r}

=》 78 = 38 × 2 + 2

=》 38 = 2 × 19 + 0

---

=》 278 = 2 × 139 + 0

\mathfrak{HCF=2}

-----

\tt{3)\:108\:and\:45}

\sf{a = bq + r}

=》 108 = 45 × 2 + 18

=》 45 = 18 × 2 + 9

=》 18 = 9 × 2 + 0

\mathfrak{HCF=9}

-----

\tt{4)\:40\:and\:6}

\sf{a = bq + r}

=》 40 = 6 × 6 + 4

=》 6 = 4 × 1 + 2

=》 4 = 2 × 2 + 0

\mathfrak{HCF=2}

Answered by Anonymous
12

\mathfrak{\huge{Hi !}}

\bf{1)\:88,121,1331}

=》 \sf{a = bq + r}

=》 \sf{1331 = 121 × 11 + 0}

\sf{Remainder = 0}

\sf{Divisor = 121}

=》 \sf{121 = 88 × 1 + 33 }

=》 \sf{88 = 33 × 2 + 22 }

=》 \sf{33 = 22 × 1 + 11}

=》 \sf{22 = 11 × 2 + 0 }

\sf{Remainder = 0}

\sf{Divisor = 11}

\tt{HCF = 11}

\bf{2)\:38,78,278}

=》 \sf{a = bq + r}

=》 \sf{78 = 38 × 2 + 2}

=》 \sf{38 = 2 × 19 + 0}

\sf{Remainder = 0}

\sf{Divisor = 2}

=》 \sf{278 = 2 × 139 + 0 }

\sf{Remainder = 0}

\sf{Divisor = 2}

\tt{HCF = 2}

\bf{3)\:108,45}

=》 \sf{a = bq + r }

=》 \sf{108 = 45 × 2 + 18}

=》 \sf{45 = 18 × 2 + 9}

=》 \sf{18= 9 × 2 + 0 }

\sf{Remainder = 0}

\sf{Divisor = 9}

\tt{HCF=9}

\bf{4)\:40,6}

=》 \sf{a = bq + r}

=》 \sf{40 = 6 × 6+ 4}

=》 \sf{6 = 4 × 1 + 2}

=》 \sf{4 = 2×2+0}

\sf{Remainder = 0}

\sf{Divisor = 2}

\tt{HCF=2}

Hope it will help uh !!

Similar questions