Physics, asked by adiudit2932, 1 year ago

Find the increase in temperature of aluminium rod if its length is to be increased by 1%. (a for aluminium = 25 × 10⁻⁶/ ° C)

Answers

Answered by RamithC
101

We will take the Length of the aluminium bar = L

Change in length (ΔL) = L/100

linear thermal expansion formula: ΔL/L = αΔT

                      α = Coefficient of linear expansion = 25 x 10⁻⁶/⁰C

                      ΔT= Temperature difference

                     

         (L/100)/L =  (25 × 10⁻⁶)(ΔT)

         ΔT  = (1/100)/(25 × 10⁻⁶)

         ΔT  = 400 ⁰C


sanemajaykumar: It is correct answer thank you
Answered by mindfulmaisel
44

"Solution:

Given:

Consider the Length of the aluminium rod = L

Thus, Change in length (\Delta L) =\frac{ L}{100}

The change in length is propotional to the orginal length and inversely propotional to the cross section "area of the rod".

We know that,

Linear thermal expansion formula:

The difference in length is directly propotional to the temprature change.

            \frac{(\Delta L)}{L} = \alpha \Delta T

         \frac{\frac{L}{100}}{L} = (25 \times 10^{-6}) (\Delta T)

             \Delta T = \frac{1}{100} \times 25 \times 10^{-6}

             \Delta T = 400 \quad degree\quad Celsius"

Similar questions