Math, asked by amansxs123, 1 month ago

Find the intervals in which the following functions are increasing or
decreasing : f(x)= (x-1)(x-2)^2​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = (x - 1) {(x - 2)}^{2}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) =\dfrac{d}{dx} (x - 1) {(x - 2)}^{2}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}uv = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u \: }}

So, using this, we get

\rm :\longmapsto\:f'(x) = (x - 1)\dfrac{d}{dx} {(x - 2)}^{2}  +  {(x - 2)}^{2}\dfrac{d}{dx}(x - 1)

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:f'(x) = (x - 1)2(x - 2) +  {(x - 2)}^{2}(1 - 0)

\rm :\longmapsto\:f'(x) =2 (x - 1)(x - 2) +  {(x - 2)}^{2}

\rm :\longmapsto\:f'(x) =(x - 2)[2x - 2 + x - 2]

\rm :\longmapsto\:f'(x) =(x - 2)[3x - 4]

So, critical points are

\rm :\longmapsto\:\boxed{ \tt{ \: x =  \frac{4}{3} \:  \: and \:  \: x = 2 \: }}

Let we check the sign of f'(x).

\begin{gathered}\boxed{\begin{array}{c|c} \bf Interval & \bf Sign \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \bigg( -  \infty ,\dfrac{4}{3} \bigg)  & \sf  + ve \\ \\ \sf \bigg(\dfrac{4}{3} ,2 \bigg)  & \sf  - ve \\ \\ \sf (2, \infty ) & \sf  + ve \end{array}} \\ \end{gathered}

So, for increasing

\rm :\longmapsto\:f'(x) > 0

\bf\implies \:x \:  \in \: \bigg( -  \infty ,\dfrac{4}{3} \bigg) \:  \cup \: (2, \:  \infty )

And

For decreasing,

\rm :\longmapsto\:f'(x) < 0

\bf\implies \: \: x \:  \in \: \bigg(\dfrac{4}{3} , \: 2 \bigg)

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions