Math, asked by maseerafathima21, 2 days ago

the right hand and left hand limit of the function f(x)=(e^1/x+1)÷e^1/x-1)if x=0 and x not eqal to 0​

Answers

Answered by mathdude500
3

Question :-

To find the right hand limit and left hand limit of the function

\rm :\longmapsto\: \dfrac{ {\bigg[e\bigg]}^{ \dfrac{1}{x} } + 1 }{{\bigg[e\bigg]}^{ \dfrac{1}{x} } - 1}  \: at \: x = 0

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0^{ - } } \frac{ {\bigg[e\bigg]}^{ \dfrac{1}{x} } + 1 }{{\bigg[e\bigg]}^{ \dfrac{1}{x} } - 1}

To evaluate, such limit, we use method of Substitution

So, Substitute

\rm :\longmapsto\:x = 0 - h \:  \: as \: x \to \: 0 \:  \: so \:  \: h \:  \to \: 0 \:

So, above can be rewritten as

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{ {\bigg[e\bigg]}^{ \dfrac{1}{ - h} } +  1 }{{\bigg[e\bigg]}^{ \dfrac{1}{ - h} }  - 1}

\rm \:  =  \: \dfrac{ {\bigg[e\bigg]}^{ \dfrac{1}{ - 0} } +  1 }{{\bigg[e\bigg]}^{ \dfrac{1}{ - 0} }  - 1}

\rm \:  =  \:\dfrac{ {e}^{ -  \infty } + 1 }{ {e}^{ -  \infty } - 1 }

\rm \:  =  \:\dfrac{0 + 1}{0 - 1}

\rm \:  =  \:\dfrac{ 1}{ - 1}

\rm \:  =  \: - 1

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0^{ - } } \frac{ {\bigg[e\bigg]}^{ \dfrac{1}{x} } + 1 }{{\bigg[e\bigg]}^{ \dfrac{1}{x} } - 1}  =  - 1 \: }}

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{x \to 0^{  +  } } \frac{ {\bigg[e\bigg]}^{ \dfrac{1}{x} } + 1 }{{\bigg[e\bigg]}^{ \dfrac{1}{x} } - 1}

To evaluate, such limit, we use method of Substitution

So, Substitute

\rm :\longmapsto\:x = 0  +  h  = h\:  \: as \: x \to \: 0 \:  \: so \:  \: h \:  \to \: 0 \:

So, above can be rewritten as

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{ {\bigg[e\bigg]}^{ \dfrac{1}{h} } +  1 }{{\bigg[e\bigg]}^{ \dfrac{1}{h} }  - 1}

can be further rewritten as

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{{\bigg[e\bigg]}^{ \dfrac{1}{x} }\bigg[ 1 +  {\bigg[e\bigg]}^{ \dfrac{1}{ - h} }\bigg]}{{\bigg[e\bigg]}^{ \dfrac{1}{x} }\bigg[ 1 - {\bigg[e\bigg]}^{ \dfrac{1}{ - h} }\bigg]}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{1 +  {\bigg[e\bigg]}^{ \dfrac{1}{ - h} }}{1 - {\bigg[e\bigg]}^{ \dfrac{1}{ - h} }}

\rm \:  =  \: \dfrac{1 +  {\bigg[e\bigg]}^{ \dfrac{1}{ - 0} }}{1 - {\bigg[e\bigg]}^{ \dfrac{1}{ - 0} }}

\rm \:  =  \:\dfrac{1 +  {e}^{ -  \infty } }{1 -  {e}^{ -  \infty } }

\rm \:  =  \:\dfrac{1 + 0}{1 - 0}

\rm \:  =  \:\dfrac{1}{1}

\rm \:  =  \:1

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0^{ + } } \frac{ {\bigg[e\bigg]}^{ \dfrac{1}{x} } + 1 }{{\bigg[e\bigg]}^{ \dfrac{1}{x} } - 1}  =  1 \: }}

Similar questions