Math, asked by pandeysatyam57227, 1 year ago

find the length of latus rectum of the equation

Attachments:

Answers

Answered by TRIPLESSS
1
It is right........ Please comment...
Attachments:
Answered by BrainlyConqueror0901
0

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=64\:units}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: parabola =    {x}^{2} =-64y+32} \\  \\ \red {\underline \bold{to \: find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

\tt{: \implies  {x}^{2}  = -64y+32} \\  \\  \tt{: \implies  {x}^{2}   = -64(y-\frac{1}{2})} \\  \\  \tt  {:  \implies  {x}^{2}  = -4\times 16 (y-\frac{1}{2} )} \\ \\ \text{So, \: it \: is \: in \: the \: form \: of} \\     \tt{: \implies X^{2}  = -4bY} \\  \\  \bold{Where :} \\   \tt{\circ \: b= 16} \\  \\  \bold{As \: we \: know \: that} \\     \tt{: \implies Latus \: rectum = 4b}\\\\ \tt{:\implies Latus\:rectum=4\times 16}   \\\\     \green{\tt{: \implies Latus \: rectum = 64 \: units}}

Similar questions