Math, asked by alie2, 1 year ago

find the limit of (x^m-a^m) /(x^n-a^n) limit of x is a

Answers

Answered by GovindRavi
3
hope this hlppp............
Attachments:
Answered by Anonymous
10

\bold{ANSWER}

\frac{m}{n}\times\:a^{m-n}

\mathbb{EXPLANATION}

\rm{put\:x=0\:in\:given\:limit\:we\:get\:\frac{0}{0}\:form}

\rm{Now\:inorder\:to\:get\:rid\:from\:this\:form\:we\:use\:LHOSPITALS\:RULE}

\underline{L'HOSPITALS\:RULE}

\rm{it\:states\:that\:whenever\:we\:have\:\frac{0}{0}\:form\:We\: Differentiate\:Numenator}

\rm{And\:Denominator\:separately\:till\:we\:come\:out\:from\frac{0}{0}}

\displaystyle\lim_{x\to\:a}\frac{x^m-a^n}{x^n-a^n}

\underline{Differentiate\:Numerator\:And\:Denominator\:Separately}

\displaystyle\lim_{x\to\:a}\frac{mx^{m-1}-0}{nx^{n-1}-0}

\displaystyle\lim_{x\to\:a}\frac{mx^{m-1}}{nx^{n-1}}

\displaystyle\lim_{x\to\:a}\:\frac{m}{n}\times\:x^{m-n}

\frac{m}{n}\times\:a^{m-n}

\therefore

\displaystyle\lim_{x\to\:a}\frac{x^m-a^m}{x^n-a^n}=\frac{m}{n}\times\:a^{m-n}

Similar questions