Math, asked by ramesh2911, 1 year ago

find the lower quartile of -4, 5, 6, 9

Answers

Answered by AbhijithPrakash
7

Answer:

\mathrm{First\:Quartile\:\left(lower\:quartile\right)\:of\:}-4,\:5,\:6,\:9:\quad 0.5

Step-by-step explanation:

\mathrm{First\:Quartile}

The first quartile is the value separating the lower quarter and higher three-quarters of the data set.

The first quartile is computed by taking the median of the lower half of a sorted set.

\mathrm{Arrange\:the\:terms\:in\:ascending\:order}

-4,\:5,\:6,\:9

\mathrm{Take\:the\:lower\:half\:of\:the\:ascending\:set}

\mathrm{Count\:the\:number\:of\:terms\:in\:the\:data\:set}

\begin{Bmatrix}-4&5&6&9\\ 1&2&3&4\end{Bmatrix}

\mathrm{The\:number\:of\:terms\:in\:the\:data\:set\:is}

4

\mathrm{Take\:the\:lower\:}2\mathrm{\:terms}

-4,\:5

\mathrm{Median\:of\:}-4,\:5

\mathrm{Median}

  • The median is the value separating the higher half of the data set, from the lower half.
  • If the number of terms is odd, then the median is the middle element of the sorted set
  • If the number of terms is even, then the median is the arithmetic mean of the two middle elements of the sorted set

\mathrm{Arrange\:the\:terms\:in\:ascending\:order}

-4,\:5

\mathrm{Find\:the\:median\:of\:the\:ascending\:set}

\mathrm{Count\:the\:number\:of\:terms\:in\:the\:data\:set}

\begin{Bmatrix}-4&5\\ 1&2\end{Bmatrix}

\mathrm{The\:number\:of\:terms\:in\:the\:data\:set\:is}

2

\mathrm{Since\:the\:number\:of\:terms\:is\:even,\:the\:median\:is\:the\:average\:of\:the\:two\:middle\:elements:\quad }-4,\:5

\mathrm{Arithmetic\:Mean\:\left(average\right)\:of\:}-4,\:5

\mathrm{Arithmetic\:Mean}

  • The arithemtic mean (average) is the sum of the values in the set divided by the number of elements in that set.
  • If our data set contains the values a_1,\:\ldots \:,\:a_n (n elements) then the average =\dfrac{1}{n}\displaystyle\sum _{i=1}^na_i

\mathrm{Compute\:the\:sum\:of\:the\:data\:set}

\mathrm{Take\:the\:sum\:of\:}-4,\:5

-4+5

Simplify

1

\mathrm{Compute\:the\:number\:of\:terms\:in\:the\:data\:set}

\mathrm{Count\:the\:number\:of\:terms\:in\:the\:data\:set}

\begin{Bmatrix}-4&5\\ 1&2\end{Bmatrix}

\mathrm{The\:number\:of\:terms\:in\:the\:data\:set\:is}

2

\mathrm{Divide\:the\:sum\:by\:the\:number\:of\:terms\:and\:simplify}

\mathrm{Divide\:the\:sum\:by\:the\:number\:of\:terms:\quad }\dfrac{\displaystyle\sum _{i=1}^na_i}{n}=\dfrac{1}{2}

\mathrm{Simplify}

0.5


ramesh2911: Thank you
letshelpothers9: osm ans:)
AbhijithPrakash: NP :)
AbhijithPrakash: Thanks!!
Similar questions
Math, 7 months ago