Math, asked by kcsr3Arstkaja3a, 1 year ago

Find the mean and variance for the first n natural numbers

Answers

Answered by mathdude500
1

Answer:

\boxed{\begin{aligned}& \qquad \:\sf \: Mean\:(\overline{x}) =  \dfrac{n + 1}{2} \qquad \: \\ \\& \qquad \:\sf \:Variance  =  \: \dfrac{ {n}^{2}  -  1}{12} \end{aligned}}  \\  \\

Step-by-step explanation:

We know, first n natural numbers are 1, 2, 3, ..., n

So, distribution table is as follow:

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf  {x}^{2} \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf  {1}^{2}  \\ \\ \sf 2 & \sf  {2}^{2}  \\ \\ \sf 3 & \sf  {3}^{2} \\ \\ \sf . & \sf .\\ \\ \sf . & \sf .\\ \\ \sf n & \sf  {n}^{2}  \end{array}} \\ \end{gathered} \\

So,

\sf \:  \sum \: x = 1 + 2 + 3 + ... + n =  \dfrac{n(n + 1)}{2}  \\  \\

and

\sf \:  \sum \: {x}^{2}  =  {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ... +  {n}^{2}  =  \dfrac{n(n + 1)(2n + 1)}{6}  \\  \\

Now,

\sf \: Mean\:(\overline{x}) = \dfrac{\sum \: x}{n}  = \dfrac{n(n + 1)}{2n} =  \dfrac{n + 1}{2}  \\  \\

Thus,

\implies\sf \: \boxed{\sf \:  Mean\:(\overline{x}) =  \dfrac{n + 1}{2}  \: } \\  \\

Now,

\sf \: Variance \\  \\

\sf \:  =  \: \dfrac{\sum \:  {x}^{2} }{n}  -  {\:(\overline{x})}^{2}  \\  \\

\sf \:  =  \: \dfrac{n(n + 1)(2n + 1)}{6n}  -  {\bigg(\dfrac{n + 1}{2}  \bigg) }^{2}  \\  \\

\sf \:  =  \: \dfrac{(n + 1)(2n + 1)}{6}  -  {\bigg(\dfrac{n + 1}{2}  \bigg) }^{2}  \\  \\

\sf \:  =  \: \dfrac{n + 1}{2} \bigg( \dfrac{2n + 1}{3}  - \dfrac{n + 1}{2} \bigg)  \\  \\

\sf \:  =  \: \dfrac{n + 1}{2} \bigg( \dfrac{2(2n + 1) - 3(n + 1)}{6} \bigg)  \\  \\

\sf \:  =  \: \dfrac{n + 1}{2} \bigg( \dfrac{4n + 2 - 3n  - 3}{6} \bigg)  \\  \\

\sf \:  =  \: \dfrac{n + 1}{2} \bigg( \dfrac{n  - 1}{6} \bigg)  \\  \\

\sf \:  =  \: \dfrac{ {n}^{2}  -  1}{12} \\  \\

Thus,

\implies\sf \: Variance  =  \: \dfrac{ {n}^{2}  -  1}{12} \\  \\

Hence,

\implies\boxed{\begin{aligned}& \qquad \:\sf \: Mean\:(\overline{x}) =  \dfrac{n + 1}{2} \qquad \: \\ \\& \qquad \:\sf \:Variance  =  \: \dfrac{ {n}^{2}  -  1}{12} \end{aligned}}  \\  \\

Similar questions