Math, asked by sing7haco3oljayajang, 1 year ago

Find the middle term of the sequence formed by all numbers between 9 and 95 ,which leave a reminder 1 when dividedby 3 .Also find the sum of the numbers on both sides of the middle term separately. PLEASE GIVE ME THE ANSWER

Answers

Answered by abhi178
389
The sequence are formed by all the numbers between 9 and 95 , which leaves remainder 1 when it is divided by 3 : 10, 13, 16, .........94
Here you can see 10, 13 , 16 , .....94 are in AP where first term , a = 10 and common difference , d = 94 .
From AP nth term formula ,
Tn = a + (n -1)d
94 = 10 + (n -1)3
84/3 = n -1 ⇒n = 29

Hence, there are 29 terms between 10 and 94
It means middle term is (n + 1)/2 th term
e.g., middle term = (29+1)/2 = 15th term
So, T₁₅ = a + (15 - 1)d = 10 + 14 ×3 = 52
Hence, 15th term is 52

here middle is 15th , it means 14 terms are in left side of it and 14 terms are in right side of it.
So, sum of first 14 term {left side } = 14/2 [ 2 × 10 + (14 -1)×3 ] [∵Sn = n/2[2a + (n-1)d]
= 7[20 + 39] = 7 × 59 = 413

Now, sum of last 14 term { right side of middle term } = S₂₉ -[ S₁₄ + T₁₅ ]
= 29/2[2 × 10 + (29-1) × 3 ] - 413 - 52
= 29/2[20 + 84 ] - 465
= 1508 - 465
= 1043
Answered by pramilabajaj666
102

Answer is given in the page linked below . Please ask if u have any doubt in it .

Hope it will help you...

Attachments:
Similar questions