Math, asked by Aaradhya9061, 11 months ago

find the modulus and amplitude of the following complex number
-4 - 4i​

Answers

Answered by Anonymous
5

Step-by-step explanation:

If z = a + ib is any complex number such that a ∈R, b∈R  

and i = √-1,

then the modulus of complex number, |Z| is given by

|Z| = √a² + b²

Amplitude of the complex number , θ is given by,

θ = tan⁻¹(b/a)

i) Z = 4 - 4i

Modulus,|Z| = √4² + 4² = √32

Amplitude,θ = tan⁻¹(-4/4) = -tan⁻¹(4/4)

i

Answered by umiko28
11

Answer:

\huge\underline{ \underline{ \red {your \: \: \: answer}}}

 \bf\red{ \boxed{  \bigstar\mapsto: modulas  |z| =  \sqrt{ = 2}  \bigstar}} \\  \bf\pink{ \boxed{  \bigstar\mapsto: its \: amplitude =\frac{\pi}{4} \bigstar }}

Step-by-step explanation:

 \bf\blue{ \boxed{complex \: number }} \\  \\  \bf\red{ \mapsto: z =  - 4 - 4i} \\  \bf\green{ \mapsto:z = a + ib } \\  \bf\orange{ \mapsto:  |z| =  \sqrt{ {a}^{2}  +  {b}^{2} }  }  \\  \\  \bf\purple{\therefore  |z| =  \sqrt{( { - 4}^{2} )  + ( { - 4}^{2} )}  } \\  \\ \bf\green{ \boxed{  \bigstar\implies:  \sqrt{32} = 4 \sqrt{2} \:  \:  \bigstar } } \\  \\  \bf\red{ \mapsto:here } \\  \\  \bf\pink{x =  - 4 \:  \:  \:  \: y =  - 4} \\   \\ \bf\green{ \boxed{  ampitude =  {tan}^{ - 1} (\frac{y}{x} )} }\\  \\  \bf\orange{ So,  \: the \:  modulus  \: of  \: the \:} \\     \bf \orange{given \:  complex  \: number  \: is \mapsto} \\  \bf\pink{ \implies  \theta =  {tan}^{ - 1}( \frac{ - 4}{ - 4} ) }  \\  \\ \bf\green{ \boxed{  \bigstar\implies \theta =  \frac{ \pi}{4}  \:  \:  \bigstar} } \\  \\ \large\boxed{ \fcolorbox{violet}{lime}{hope \: it \: help \: you}}

Similar questions