Math, asked by kantvisnu860, 1 year ago

find the nth derivative of cos(ax+b)

Answers

Answered by babundrachoubay123
16

Answer:

y_n = a^{n}\times cos[\frac{n\pi}{2} + ax + b]

Step-by-step explanation:

We can find out the nth derivation of cos (ax + b)

So, Let y = cos (ax + b)

Diffraction both side with respect to x.

y' = \frac{dy}{dx} = \frac{d}{dx} cos(ax +b)

  = -a sin(ax + b)

y' = a\times cos[\frac{\pi}{2} + ax +b]

Diffraction both side with respect to x.

y'' = -a^2\times sin[\frac{\pi}{2} + ax +b]

y'' = a^{2}\times cos[\frac{2\pi}{2} + ax +b]

So, y''' = a^{3}\times cos[\frac{3\pi}{2} + ax +b]

y'''' = a^{4}\times cos[\frac{4\pi}{2} + ax +b]

similarly the value of  nth derivative of cos(ax+b) is

y_n = a^{n}\times cos[\frac{n\pi}{2} + ax + b]

Similar questions