Math, asked by rajuranjith8126, 10 months ago

.
Find the number of trailing zeroes in 56!
(a) 13
(b) 11
(C) 12
(d) 6​

Answers

Answered by mysticd
0

 \pink { Number \:of \: trailing \: zeroes \: in}\\\pink { a\:factorial \: (n!) }

 \green { = Highest \: power \: of \:5 \: in \:n!}

 Here, Given \: number \: 56!

 i )\frac{[ 56]}{5} = \blue {11 }. It \: is \: greater \:than \:5

 ii)\frac{[ 11]}{5} = \blue {2}. It \: is \: less \:than \:5

 Now, we \: stop \: the \: process \:here .

 \therefore \red{The \: trailing \:zeroes \: in \:56! }\\= 11 + 2 \\\green { = 13 }

Therefore.,

 Option \: \pink { ( a ) } \:is \: correct.

•••♪

Answered by suryachandra9306
1

Answer:13- Option 'a'

Step-by-step explanation:

Similar questions