Math, asked by sanikamorghade, 11 months ago

find the numberf sides of a regular polygon if each of its interior angle is4​

Attachments:

Answers

Answered by ihrishi
0

Step-by-step explanation:

Measure \: of \: interior \:  \angle =  \frac{4 \pi^{c} }{5}  \\ \\ =  \frac{4 \times 180 \degree}{5}  = 4 \times 36 \degree = 144 \degree \\  \\Measure \: of \: exterior \:  \angle = 180 \degree - 144 \degree \\  \\= 36\degree \\ no \: of \: sides \: in \: regular \: polygon \:  \\\\=  \frac{360 \degree}{Measure \: of \: exterior \:  \angle}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\=  \frac{360 \degree}{36 \degree}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\= 10 \\ thus \: the \: given \: polygon \: has \: 10 \: sides \\\\ hence \: it \: is \: \: a \huge \:DECAGON \:

Similar questions