Math, asked by Anonymous, 6 months ago

⁕Find the particular solution of the differential equation
 \sf(1 + e ^{2x} )dy + (1 + y {}^{2} )e { }^{x} dx = 0 \:
Given that y=1 when x=0

Solve Only If you know the answer

Answers

Answered by Anonymous
8

Solution:-

=> For particular solution First of all we have to find general equation

 \rm \implies \: (1 +  {e}^{2x} )dy +( 1 +  {y}^{2} ) {e}^{x} dx

Now using variable separation method

 \rm \implies\: (1 +  {e}^{2x} )dy =  - (1 +  {y}^{2} ) {e}^{x} dx

 \rm \implies \: dy =  \dfrac{ - (1 +  {y}^{2}) {e}^{x}  }{1 +  {e}^{2x} } dx

 \rm \implies \:  \dfrac{dy}{1 +  {y}^{2} }  =   - \dfrac{ {e}^{x} dx}{1 +  {e}^{2x} }

Now integrate on both side

 \rm \implies \:   \int\dfrac{dy}{1 +  {y}^{2} }  =   -  \int\dfrac{ {e}^{x} dx}{1 +  {e}^{2x} }  \\

Now take

 \rm \implies \int \dfrac{dy}{1 +  {y}^{2} }  =  \tan {}^{ - 1} y \\

Now integrate

 \rm \implies -  \int \dfrac{ {e}^{x}dx }{1 +  {e}^{2x} }  \\

Using substitution method

Let

 \rm \implies \:  {e}^{x}  = t

 \rm \implies \:  {e}^{x} dx = dt

We can write

 \rm \implies -  \int \:  \dfrac{dt}{1 +  {t}^{2} }  =  \tan {}^{ - 1} t \\

 \rm \implies \tan {}^{ - 1} y =  -  \tan {}^{ - 1} t + c

\rm \implies \tan {}^{ - 1} y =  -  \tan {}^{ - 1}  {e}^{x} + c

Now its given y = 1 and x = 0

 \rm \implies \tan {}^{ - 1} 1 +  \tan {}^{ - 1}  {e}^{0}  = c

\rm \implies \tan {}^{ - 1} 1 +  \tan {}^{ - 1}  1  = c

 \rm \implies \dfrac{\pi}{4}  +  \dfrac{\pi}{4}  = c

 \rm \implies \: c =  \dfrac{\pi}{2}

We get

\rm \implies \tan {}^{ - 1} y +  \tan {}^{ - 1}  {e}^{x} =  c

\rm \implies \tan {}^{ - 1} y  +  \tan {}^{ - 1}  {e}^{x}  =   \dfrac{\pi}{2}

using properties of inverse trigonometry

 \implies \rm \tan {}^{ - 1} x+  \cot {}^{ - 1}x   =  \dfrac{\pi}{2}

 \rm \implies \tan {}^{ - 1} x =  \cot {}^{ - 1}  \dfrac{1}{x}

Now

 \rm \implies \:   \tan {}^{ - 1}  {e}^{x}  =   \dfrac{\pi}{2}  - \tan {}^{ - 1} y

\rm \implies \:   \tan {}^{ - 1}  {e}^{x}  =  \tan {}^{ - 1}  \dfrac{1}{y}

So put the value

\rm \implies \tan {}^{ - 1} y  +  \tan {}^{ - 1}   \dfrac{1}{y}  =   \dfrac{\pi}{2}

 \rm \implies \:  \tan {}^{ - 1}  {e}^{x}  =  \tan {}^{ - 1}  \dfrac{1}{y}

 \rm \implies \:  {e}^{x}  =  \dfrac{1}{y}

 \rm \implies {e}^{x} y = 1

Answer

 \rm \implies {e}^{x} y = 1

Answered by Anonymous
3

User Dead Again !! This time I'm leaving forever & Never come back

That Fellow asked Bluestar18 & Tomboyish44 Are your Bf ??How many bf you have

And Irritating Arnav, Varsha is ur gf not ur Sis quite many times he said

They both Fought in bio chat

Arnav blocked me idk why

Purple You BUNNYforever

Attachments:
Similar questions
Math, 11 months ago