Math, asked by uniques, 1 year ago

find the point on tge x axis which is equidistant from (2, -5) , and (-2, 9)?

Answers

Answered by Brainlytrainer
9
✡ =====================================✡


the answer is in the given attachment for any queries contact comment box.
Attachments:
Answered by abhi569
5


<br /><br /><br /><br /> \textbf{Let the point be ( x , 0) , } \\  \\  \textbf{By Distance formula,  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  distance \: formula }   \rightarrow\:  \: distance \: between \: two \: points \:  =  \sqrt{(x_{1} - x_{2} )^{2} +  ( y_{1} - y_{2} ) ^{2}}   \\  \\  \\  \textbf{<br />Distance between ( 2, - 5 ) and ( x ,  y ) = Distance between ( x ,  y ) and ( - 2 ,  9 ) }<br /><br /><br />\\ \\ \\ <br />Hence, <br /><br /><br />\\ \\ <br /><br /> \sqrt{ {(x - 2)}^{2}  +  {(0+ 5)}^{2} }  =  \sqrt{ {( - 2 - x)}^{2}  +  {(9 - 0)}^{2} } <br /><br />\\ \\ <br />Square  \: on \:  both  \: sides, <br /><br /><br /><br /><br /><br /><br /><br />\\ \\ \\ \\ <br /> =  &gt;  {(x - 2)}^{2}  +  {5}^{2}  =  {(2 + x)}^{2}  +  {9}^{2}  \\  \\  =  &gt;  {x}^{2}  + 4 - 4x + 25 = 4 +  {x}^{2}  + 4x + 81 \\  \\  =  &gt; 25 - 81 = 4x +4x \\  \\  =  &gt;  - 56 = 8x \\  \\    =  &gt; <br /> -  \frac{56}{8} = x \\  \\    = &gt;  - 7 = x



Point = ( 7 , 0 )
Similar questions