Math, asked by bharatchawlanotecoun, 9 months ago

find the principal value of cos^-1 (sin 10π/7)​

Answers

Answered by sandeepandy23042005
2

Answer:

4pi/7

Step-by-step explanation:

cos^_1(cos(2pi- 10pi/_7)= 4pi/7

Answered by vinod04jangid
1

Answer:

\frac{13\pi }{14}

Step-by-step explanation:

Given:- cos^{-1}(sin\frac{10\pi }{7} )

To Find:- Principal value of the above equation.

Solution:-

As we know acc. to trigonometric formulas,

                       sin θ = cos( 90° -  θ)

∴ sin \frac{10\pi }{7} = cos(\frac{\pi }{2} - \frac{10\pi }{7})

              = cos (\frac{7\pi  - 20\pi }{14} )

              = cos(-\frac{13\pi }{14} )

As we know, cos (- θ) = cos θ

cos (-\frac{13\pi }{14} ) = cos (\frac{13\pi }{14} )

Now, the equation becomes,

cos^{-1} (cos(\frac{13\pi }{14} )) = \frac{13\pi }{14}

Hence, the answer is \frac{13\pi }{14}

#SPJ3

Similar questions