Math, asked by MeerSardarAli, 1 year ago

find the principal value of tan¹ (-1).​

Answers

Answered by Anonymous
6

_______________♦♦♦

\bf\red{HERE\:IS\:YOUR\:ANSWER}

_______________♦♦♦

let y = tan^-1(-1)

tan y = 1

tan y = tan(-π/4)

range of principal value of tan^-1 is

(-π/2 to π/2)

so principal value of tan^-1(-1) is -π/4

________________♦♦♦

\bf\green{BE\: BRAINLY} \bf\green{BE\: HAPPY}

<marquee behaviour-move bigcolour-pink><h1>☺ThankYou✌</h1></marquee>

________________♦♦♦


MeerSardarAli: thanks computer student
Anonymous: ♦♦ Wellcome dear✌
MeerSardarAli: dude i need your help!!
MeerSardarAli: hey
Anonymous: ans related any query
Anonymous: ❓❓
MeerSardarAli: no
MeerSardarAli: i have more questions
Answered by Anonymous
41

Step-by-step explanation:

\Large{\red{\underline{\underline{\tt{\blue{Answer:}}}}}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Let \sf tan^{-1}(1)\:=\:y ...Then,

 ‎ ‎ ‎ ‎ ‎ ‎

\sf tan\,y\:=\:-1\:=\:-tan \left(\dfrac{\pi}{4}\right)\:=\:tan \left(-\dfrac{\pi}{4}\right)

 ‎ ‎ ‎ ‎ ‎ ‎

 ‎ ‎ ‎ ‎ ‎ ‎

We know that the range of the principle value of \sf tan^{-1} is

 ‎ ‎ ‎ ‎ ‎ ‎

\sf \left(- \dfrac{\pi}{2}\:,\: \dfrac{\pi}{2}\right) and \sf tan \left(-\dfrac{\pi}{4}\right) is -1

 ‎ ‎ ‎ ‎ ‎ ‎

Therefore, principle value of \sf tan^{-1} is \tt -\dfrac{\pi}{4}

Similar questions