Math, asked by monikachauhan16, 5 months ago

Find the product of ( 1/2xcube) (-10x) (1/5xsquare) verify the result for x =1.​

Answers

Answered by pulakmath007
47

SOLUTION :-

TO DETERMINE :-

  • The product

 \displaystyle \sf{   \bigg(\frac{1}{2 {x}^{3} }  \bigg) \times ( - 10x) \times  \bigg( \frac{1}{5 {x}^{2} } \bigg) }

  • TO verify the result for x = 1

EVALUATION :-

DETERMINATION OF PRODUCT :-

 \displaystyle \sf{   \bigg(\frac{1}{2 {x}^{3} }  \bigg) \times ( - 10x) \times  \bigg( \frac{1}{5 {x}^{2} } \bigg) }

 =  \displaystyle \sf{   \bigg( - \frac{5}{ {x}^{2} }  \bigg)  \times  \bigg( \frac{1}{5 {x}^{2} } \bigg) }

 \displaystyle \sf{   =  - \frac{1}{ {x}^{4} } }

Therefore

 \displaystyle \sf{   \bigg(\frac{1}{2 {x}^{3} }  \bigg) \times ( - 10x) \times  \bigg( \frac{1}{5 {x}^{2} } \bigg) } =  -  \frac{1}{ {x}^{4} }

VERIFICATION :-

For x = 1

LHS

 =  \displaystyle \sf{   \bigg(\frac{1}{2 .{(1)}^{3} }  \bigg) \times ( - 10.1) \times  \bigg( \frac{1}{5. {(1)}^{2} } \bigg) }

 =  \displaystyle \sf{ \frac{1}{2  }  \times ( - 10) \times   \frac{1}{5  } }

 =  - 1

RHS

 =  \displaystyle \sf{   -  \frac{1}{ {x}^{4} } }

 =  \displaystyle \sf{  -   \frac{1}{ {(1)}^{4} }  }

= - 1

Therefore LHS = RHS

Hence verified

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find a number whose 6 1/4% is 12

https://brainly.in/question/24604085

2. How many 1/2 makes 3

https://brainly.in/question/28842345

Similar questions