Math, asked by balaji2157, 7 months ago

Find the product of (3x – 1) and (10x2 – 19x + 6) and also verify the result for x = 2.​

Answers

Answered by mysticd
9

 The \: product \: of \: (3x-1) \:and \\(10x^{2}-19x+6)

 = (3x-1)( 10x^{2}-19x+6)

 =3x( 10x^{2}-19x+6) -1(10x^{2}-19x+6)

 = 30x^{3} - 57x^{2} + 18x - 10x^{2} + 19x - 6

 = 30x^{3} -(57+10)x^{2} + (18+19)x -6

 = 30x^{3} -67x^{2} + 37x -6

Therefore.,

 \red{(3x-1)( 10x^{2}-19x+6)}

 \green { = 30x^{3} -67x^{2} + 37x -6}

Verification:

/* Substitute x = 2 in the above equation ,we get*/

 LHS \\= (3x-1)( 10x^{2}-19x+6)

 = (3\times 2-1)[ 10\times 2^{2} - 19\times 2 + 6 ]\\=(6-1)(40-38+6)\\= 5\times 8\\= 40

 RHS \\= 30x^{3} -67x^{2} + 37x -6

 = 30\times 2^{3} - 67 \times 2^{2} + 37 \times 2 - 6 \\= 30 \times 8 - 67 \times 4 + 74 - 6\\= 240 - 268+68 \\= 40

 LHS = RHS

•••♪

Answered by arundhatimishra4640
3

Step-by-step explanation:

See the attached image above......

hope this will help you....

thanks for ASKING questions to us....

have a nice day AHEAD.....

Attachments:
Similar questions