Find the product using suitable identities:(x+8) (x-10)
Answers
Answered by
1
• (x+8)(x-10) = ?
=> {x+8}{x-10} = {x+8}{x+(-10)}
a
As we know that ,
(x+a)(x+b) = x^2 +(a+b)x + ab .
here ,
a = 8 & b = 10 .
=> {x+8}{x+(-10)} = x^2 + {8+(-10)}x + 8×(-10)
=> {x+8}{x-10} = x^2 + (-2)x + (-80)
=> {x+8}{x-10} = x^2 -2x - 80 .
=> {x+8}{x-10} = {x+8}{x+(-10)}
a
As we know that ,
(x+a)(x+b) = x^2 +(a+b)x + ab .
here ,
a = 8 & b = 10 .
=> {x+8}{x+(-10)} = x^2 + {8+(-10)}x + 8×(-10)
=> {x+8}{x-10} = x^2 + (-2)x + (-80)
=> {x+8}{x-10} = x^2 -2x - 80 .
Answered by
13
Using the identity, (x+a)(x+b) = x ²+(a+b)x+ab
[Here, a = 8 and b = −10]
We get,
(x+8)(x−10) = x²+(8+(−10))x+(8×(−10))
= x²+(8−10)x–80
= x²−2x−80
Similar questions