Find the ratio in which the point (-3, k) divides the line-segment joining the points (-5, -4) and (-2, 3). Also find the value of k.
If the point C (-l, 2) divides internally the line-segment joining the points A (2, 5) and
B (x,y) in the ratio 3 : 4, find the value of x2 + y2.
Answers
Answered by
1
Step-by-step explanation:
given A(-5,-4), B(-2,3), P(-3,k)
ratio = x- x1:x2-x=-3-(-5):-2-(-3)=-3+5:-2+3=2:1.
(-3,k)=(2(-2)+1(-5)/1+2,2(3)+1(-4)/2+1)
equate the y coordinates
k=6-4/3=2/3......
given A(2 ,5) B(x,y) C(-1,2)
m:n=3:4
(-1,2)=(3(x)+4(2)/3+4,3(y)+4(5)/3+4)
(-1,2)=(3x+8/7,3y+20/7)
-1=3x+8/7,2=3y+20/7
-7=3x+8,14=3y+20
-15=3x,-6=3y
x=-5,y=-2
×^2+y^2=(-5)^2+(-2)^2=25+4=29
Similar questions