Math, asked by anmolparashar616, 11 months ago


Find the ratio in which the v-axis divides the line
the y-axis divides the line segment joining the
pour
1-4) and (5, -6). Also find the coordinates of the point of
intersection.​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Points are(1,-4) and (5,-6)}

\textbf{To find:}

\textsf{The ratio in which the line segment joining the}

\textsf{points (1,-4), and (5,-6) is divided by y-axis}

\textbf{Solution:}

\textbf{Section formula:}

\textbf{The co ordinates of the point which divides the}

\textbf{line segment joining $(x_1,y_1)$ and $(x_2,y_2)$ internally in the ratio m:n are}

\boxed{\bf\left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}\right)}

\textsf{By using section formula, the co-ordination of point of division is}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}

\mathsf{\left(\dfrac{m(5)+n(1)}{m+n},\dfrac{m(-6)+n(-4)}{m+n}\right)}

\mathsf{\left(\dfrac{5m+n}{m+n},\dfrac{-6m-4n}{m+n}\right)}

\textbf{Since the point of division lies on y-axis,}

\mathsf{\dfrac{5m+n}{m+n}=0}

\implies\mathsf{5m+n=0}

\implies\mathsf{5m=-n}

\implies\mathsf{\dfrac{m}{n}=\dfrac{-1}{5}}

\therefore\textsf{y-axis dvides the line segment joining (1,-4) and (5,-6)}

\therefore\textsf{externally in the ratio 1:5}

\textsf{The point of division is}

\mathsf{\left(\dfrac{mx_2-nx_1}{m-n},\dfrac{my_2-ny_1}{m-n}\right)}

\mathsf{\left(\dfrac{5m-n}{m-n},\dfrac{-6m+4n}{m-n}\right)}

\mathsf{\left(\dfrac{5(1)-5}{1-5},\dfrac{-6(1)+4(5)}{1-5}\right)}

\mathsf{\left(0,\dfrac{14}{-4}\right)}

\boxed{\mathsf{\left(0,\dfrac{-7}{2}\right)}}

Find more:

Find the ratio in which line segment joining (-3,10) and (6,-8) is divided by y axis also find the point of division

https://brainly.in/question/20781027

Answered by mahek77777
2

 \huge \purple{\fbox \blue{\fbox\pink{\fbox\red{Solution }}}}

\textbf{Given:}

\textsf{Points are(1,-4) and (5,-6)}

\textbf{To find:}

\textsf{The ratio in which the line segment joining the}

\textsf{points (1,-4), and (5,-6) is divided by y-axis}

\textbf{Solution:}

\textbf{Section formula:}

\textbf{The co ordinates of the point which divides the}

\textbf{line segment joining $(x_1,y_1)$ and $(x_2,y_2)$ internally in the ratio m:n are}

\boxed{\bf\left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}\right)}

\textsf{By using section formula, the co-ordination of point of division is}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}

\mathsf{\left(\dfrac{m(5)+n(1)}{m+n},\dfrac{m(-6)+n(-4)}{m+n}\right)}

\mathsf{\left(\dfrac{5m+n}{m+n},\dfrac{-6m-4n}{m+n}\right)}

\textbf{Since the point of division lies on y-axis,}

\mathsf{\dfrac{5m+n}{m+n}=0}

\implies\mathsf{5m+n=0}

\implies\mathsf{5m=-n}

\implies\mathsf{\dfrac{m}{n}=\dfrac{-1}{5}}

\therefore\textsf{y-axis dvides the line segment joining (1,-4) and (5,-6)}

\therefore\textsf{externally in the ratio 1:5}

\textsf{The point of division is}

\mathsf{\left(\dfrac{mx_2-nx_1}{m-n},\dfrac{my_2-ny_1}{m-n}\right)}

\mathsf{\left(\dfrac{5m-n}{m-n},\dfrac{-6m+4n}{m-n}\right)}

\mathsf{\left(\dfrac{5(1)-5}{1-5},\dfrac{-6(1)+4(5)}{1-5}\right)}

\mathsf{\left(0,\dfrac{14}{-4}\right)}

\boxed{\mathsf{\left(0,\dfrac{-7}{2}\right)}}

Similar questions