Math, asked by kingsarthak123, 11 months ago

find the remainder when f(x)x^3-6x^2+2x-4 is divided by 3x-1

Answers

Answered by Rose08
10

Answer :-

The remainder is -107/27 respectively.

Solution :-

f(x) = x³ - 6x² +2x - 4 divided by the linear polynomial g(x) = 3x - 1

At first, we will find out the zero of the polynomial 3x - 1

=> 3x - 1 = 0

=> 3x = 1

=> x = 1/3

From the remainder thereom, we know that f(x) when divided by g(x) gives the remainder f(1/3)

Putting the value of x

 {x}^{3}  - 6 {x}^{2}  + 2x - 4

 =  {( \dfrac{1}{3}) }^{3}  - 6 \times  { (\dfrac{1}{3}) }^{2}  + 2 \times  \dfrac{1}{3}  - 4

 =  \dfrac{1}{27}  - 6 \times  \dfrac{1}{9}  +  \dfrac{2}{3}  - 4

 =  \dfrac{1}{27}  -  \dfrac{2}{3}  +  \dfrac{2}{3}  - 4

 =  \dfrac{1}{27}  - 4

 =  \dfrac{1 - 108}{27}

 =  -  \dfrac{107}{27}

Hence, the remainder is - 107/27.

Answered by shikhaku2014
12

Solution

given \: p(x) \:  {x}^{3 }  - 6 {x}^{2}  + 2x - 4

 \:  \:  \:  \:  \:  \: g(x) =3 x   - 1

By using remainder theorm

g(x) = 0

 \implies \: 3x - 1 = 0

 \implies \: 3x = 0 + 1

 \implies \: x =  \frac{1}{3}

p ( x) = x ^{3}  - 6 {x}^{2}  + 2x - 4

Putting the value of x

 \implies \: p ( \frac{1}{3} )\:  =  \:( { \frac{1}{3} )}^{3}   - 6 \times ( { \frac{1}{3} })^{2}  + 2 \times  \frac{1}{3}  - 4

 \implies \:  \frac{1}{27}  -  \cancel{6} \times  \dfrac{1} {\cancel{9}} +  \frac{2}{3}  - 4

 \implies \:  \frac{1}{27}  -  \frac{2}{3}  +  \frac{2}{3}  - 4

  - \frac  { 2}{3}  \: and \:  +  \frac{2}{3}  \: got \: cancled

 \implies \frac{1}{27}  - 4

LCM of both the number is 27

 \therefore \:  \frac{1 \times 1}{27 \times 1}  -  \frac{4 \times 27}{1 \times 27}

 \implies \:  \frac{1 - 108}{27}

 =  \large \underline{ \underline{ \boxed {{ -  \frac{107}{27}}}}} \: answer

Similar questions