Math, asked by Parassingh882, 1 month ago

Find the root mean square value of f(x).=x² in (0,l)

Answers

Answered by sashir321
0

Answer:

find square root mean square value of function f(x)=x² in intervals (0,l)

Answered by SmritiSami
2

Given,

f(x) = x²

To find,

The RMS value of f(x) in (0,1).

Solution,

The root mean square value of f(x)=x² in (0,1) is \sqrt{\frac{1}{5} }.

We can simply solve the mathematical problem by the following procedure.

We know that,

RMS value = \sqrt{\frac{\int\limits^1_0 {y^2} \, dx }{\int\limits^1_0 {} \, dx } }

Putting the value of 'x' in place of 'y'.

                  = \sqrt{\frac{\int\limits^1_0 {x^4} \, dx }{\int\limits^1_0 {} \, dx } }

Following the rules of integration.

                  = \sqrt{\frac{\frac{x^5}{5} }{x}

                  = \sqrt{\frac{\frac{1}{5} }{1}}

                  = \sqrt{\frac{1}{5} }

Thus, the root mean square value of f(x)=x² is \sqrt{\frac{1}{5} }.

Similar questions