Math, asked by sd8828083, 4 months ago

Find the roots
ef
Eq by the method of
completing the square 5x² - 6x - 2 = 0​

Answers

Answered by MagicalBeast
4

Given :

5x² - 6x - 2 = 0

To find :

Root of above equation by completing Square method

Solution :

1) First of all , make coefficient of x² a perfect square.

Here we are given that coefficient of x² is 5 .

So we will take 5 as common from whole Equation.

 \sf \implies \: 5( {x}^{2}  \:  -   \: \dfrac{6}{5} x \:  -  \dfrac{2}{5}  \:   )= \: 0

_______________________________________________

2) We can write above equation as ,

 \sf \implies \: 5( {x}^{2}  \:   +   \: 2 \times ( x) \times(  \dfrac{- 3}{5} ) \:  -  \dfrac{2}{5}  \:   )= \: 0

_______________________________________________

3) Add and subtract (-3/5)² on LHS { inside the bracket }

 \sf \implies \: 5 \left[ \: \:  {x}^{2}  \:   +   \: 2 \times ( x) \times(  \dfrac{- 3}{5} ) \:  -  \dfrac{2}{5}  \:  +  ( { \dfrac{ - 3}{5} }^{2} )  - ( { \dfrac{ - 3}{5} }^{2}) \:  \:   \right] \: = \: 0 \\ \\ \\ \sf \implies \: \left[ \:   \bigg \{{x}^{2}  \:   +   \: 2 \times ( x) \times(  \dfrac{- 3}{5} ) \: +  ( { \dfrac{ - 3}{5} }^{2} ) \bigg \} -  \dfrac{2}{5}  \:   - ( { \dfrac{ - 3}{5} }^{2}) \:   \right] = \: \dfrac{0}{5}\\ \\ \\ \sf \implies \: \left[ \:   \bigg \{{x}^{2}  \:   +   \: 2 \times ( x) \times(  \dfrac{- 3}{5} ) \: +  ( { \dfrac{ - 3}{5} }^{2} ) \bigg \} -  \dfrac{2}{5}  \:   - ( { \dfrac{ - 3}{5} }^{2}) \:   \right] = \: 0

_______________________________________________

4) Compare it with (a+b)² = a² + 2(a)(b) + b²

{ a = x ; b = -(3/5) }

\sf \implies \: \left[ \:   {  \bigg \{ x   +  \dfrac{(  - 3)}{5} \bigg \}}^{2}   -  \dfrac{2}{5}  \:   - \dfrac{ 9}{25}  \:   \right] = \: 0 \\   \\ \\ \sf \implies \: \left[ \:   {  \bigg \{ x  -  \dfrac{3}{5} \bigg \}}^{2}   -  \dfrac{(2 \times 5) + (1 \times 9)}{25}  \:     \right] = \: 0  \\  \\  \\ \sf \implies \: \left[ \:   {  \bigg \{ x -  \dfrac{3}{5} \bigg \}}^{2}   -  \dfrac{(10) + ( 9)}{25}  \:   \:   \right] = \: 0  \\  \\  \\ \sf \implies \: \left[ \:   {  \bigg \{ x  -  \dfrac{ 3}{5} \bigg \}}^{2}   -  \dfrac{19}{25}  \ \:   \right] = \: 0  \\  \\  \\ \sf \implies \:   {  \bigg \{ x  -  \dfrac{ 3}{5} \bigg \}}^{2}    \ \:    = \:   \dfrac{19}{25}

_______________________________________________

5) Take square root on both side & solve for x

\sf \implies  \sqrt{( {x -  \dfrac{3}{5}) }^{2} }  \:  =  \:  \sqrt{ \dfrac{19}{25} }  \\  \\ \\ \sf \implies (x -  \dfrac{3}{5} ) =  \pm \:   \dfrac{ \sqrt{19} }{5}  \\  \\ \\ \sf \implies x \:  =  \dfrac{3}{5}  \pm \:  \dfrac{ \sqrt{19} }{5}  \\ \\ \\ \sf \implies x \:  =  \bold{ \dfrac{3 \pm \: \sqrt{19}  }{5} }

_______________________________________________

ANSWER :

Root of given equation ➝

 \sf \:  \:  \:  x \:  =  \bold{ \dfrac{3 \pm \: \sqrt{19}  }{5} }

Similar questions