Math, asked by padma6743, 9 months ago

find the roots of quardratic equation
x 2 +  \sqrt{2x - 12 = 0}

Answers

Answered by brainlyaryan12
4

<body bgcolor="r"><font color =yellow>

\huge{\orange{\fbox{\fbox{\blue{\bigstar{\mathfrak{\red{Answer}}}}}}}}

<marquee scrollamount = 700>✌️✌️✌️</marquee><marquee scrollamount = 500>⭐⭐⭐</marquee>

If question is -

\huge{x^2+\sqrt{2}x-12}

Then Solution:

Using quadratic formula-

\large{x = \frac{-b ±\sqrt{b^2 - 4ac}}{2a}}

=> \frac{-\sqrt{2} ± \sqrt{2 - 4×(-12)}}{2}

=> \frac{-\sqrt{2} ±\sqrt{50}}{2}

=> \frac{-\sqrt{2}±5\sqrt{2}}{2}

First root-

\large\orange{\fbox{\pink{x-2\sqrt{2}}}}

Second root-

\large\orange{\fbox{\pink{x+3\sqrt{2}}}}

\huge{\purple{\bigstar{\blue{\text{Hope it helps...}}}}}

Similar questions