Math, asked by akvskarthik2005, 10 months ago

Find the roots of the given quadratic equation using completing square method
Equation:
 {5x}^{2}  - 7x - 6 = 0

Answers

Answered by Anonymous
1

Step-by-step explanation:

5 {x}^{2}  - 7x - 6 = 0 \\  \\ dividing \: 5 \: on \: both \: sides \\  \\  \frac{5 {x}^{2} }{5}  -  \frac{7x}{5}  -  \frac{6}{5}  = 0 \\  \\  {x}^{2}  -  \frac{7x}{5}  -  \frac{6}{5}  = 0 \\  \\  {x}^{2}  -  \frac{7x}{5}  =  \frac{6}{5}  \\  \\  {x}^{2}  - 2 \times  \frac{1}{2}  \times  \frac{7x}{5}  =  \frac{6}{5}  \\  \\  {x}^{2}  - 2x \times  \frac{7}{10}  =  \frac{6}{5}  \\  \\ adding \:  {( \frac{7}{10} )}^{2}  \: on \: both \: sides \:  \\  \\  {x}^{2}   -  2x \times  \frac{7}{10}  +  {( \frac{7}{10} )}^{2}  =  \frac{6}{5}  +  { (\frac{7}{10}) }^{2}  \\  \\  {(x +  \frac{7}{10} )}^{2}  =  \frac{6}{5}  +  \frac{49}{100}  \\  \\  {( x + \frac{7}{10} )}^{2}  =  \frac{120 + 49}{100}  \\  \\  {(x +  \frac{7}{10}) }^{2}  =  \frac{169}{100}  \\  \\  (x +  \frac{7}{10}) =  \sqrt{ \frac{169}{100} } \\  \\ x +  \frac{7}{10}    =  \sqrt{ \frac{13 \times 13}{10 \times 10} }  \\  \\ x +  \frac{7}{10}  =   +  - \frac {13}{10}  \\  \\ on \: taking \:  +  \\  \\ x +  \frac{7}{10} =  \frac{13}{10}  \\  \\  x =  \frac{13}{10}  -  \frac{7}{10}  \\  \\ x =  \frac{13 - 7}{10}  \\  \\ x =  \frac{6}{10}  \\  \\ x =  \frac{3}{5}  \\  \\on \:  taking \:  -  \\  \\ x  +  \frac{7}{10}  =     - \frac{13}{10}  \\  \\ x =  -  \frac{13}{10}  -  \frac{7}{10}  \\  \\ x =  =  \frac{ - 13 - 7}{10 }  \\  \\ x =  \frac{ - 20}{10}  \\  \\  x =  - 2 \\  \\ therefore \: the \: roots \: are \: ( - 2) \: and \:  \frac{3}{5}

Similar questions