Math, asked by ramaanjaneyulu2, 1 year ago

find the roots of the quadratic equation 2 root 3x^2-5x+root3=0 if they exist by using quadratic formula

Answers

Answered by prisha1230
180
2√3x² - 5x + √3 = 0
2√3x² - 3x - 2x + √3 = 0
√3x(2x - √3) - 1(2x - √3) = 0
(2x - √3)(√3x - 1) = 0
x = √3/2, 1/√3
Answered by SerenaBochenek
105

Answer:

\text{The roots are }\frac{3}{2\sqrt3}, \frac{1}{\sqrt3}

Step-by-step explanation:

Given the equation

2\sqrt3 x^2-5x+\sqrt3=0

we have to find the roots of above equation using quadratic formula.

2\sqrt3 x^2-5x+\sqrt3=0

\text{Comparing above equation with }ax^2+bx+c=0\text{ , we get}

a=2\sqrt3, b=-5, c=\sqrt3

By quadratic formula

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

x=\frac{-(-5)\pm \sqrt{(-5)^2-4(2\sqrt3)(\sqrt3)}}{2(2\sqrt3)}

x=\frac{5\pm\sqrt{25-24}}{4\sqrt3}

x=\frac{5\pm 1}{4\sqrt3}

x=\frac{6}{4\sqrt3}, \frac{4}{4\sqrt3}

\text{Hence, the roots are }\frac{3}{2\sqrt3}, \frac{1}{\sqrt3}

Similar questions