Math, asked by Archfgfgmishithri, 1 year ago

Find the roots of the quadratic equation 3x 2 - 2√6x+2=0

Answers

Answered by Anonymous
237
3x^2-√6x-√6x+2=0 √3x(√3x-√2)-√2(√3x-√2)=0 (√3x-√2)(√3x-√2)=0 x=√2/√3 and x=√2/√3
Answered by Syamkumarr
12

Answer:

Roots of the given equation are \frac{2\sqrt{6} }{4}   and  \frac{2\sqrt{6} }{4}

Step-by-step explanation:

Given equation   3x^{2} -2\sqrt{6} x +2 =0

compare the given equation with ax^{2} + bx + c =0  

a =3, b = -2\sqrt{6}  and c = 2  

b^{2} -4ac = (-2\sqrt{6} ) ^{2}  - 4 ( 3) ( 2)  

                 = 4(6) -24

                 =  24 -24 = 0  

⇒ roots of given equations are equal and real      

x = [- b ±  \sqrt{b^{2} - 4ac }  ] / 2a  

   = [ - ( -2\sqrt{6}) ± \sqrt{(-2\sqrt{6} )^{2} - 4(3)(2) } / 2(3)

   =   4(\sqrt{6}) ± \sqrt{0} / 6  

   =  4 \sqrt{6} / 6

   = \frac{2\sqrt{6} }{3}

⇒ roots of the given equation are \frac{2\sqrt{6} }{3 }  and \frac{2\sqrt{6} }{3}  

Similar questions
Physics, 8 months ago