Math, asked by Akshit5859, 1 year ago

Find the roots of the quadratic equation 3x-8/x=2

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{3x-\dfrac{8}{x}=2}

\underline{\textbf{To find:}}

\textsf{Roots of the quadratic equation}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{3x-\dfrac{8}{x}=2}

\textsf{This can be written as,}

\mathsf{\dfrac{3x^2-8}{x}=2}

\mathsf{3x^2-8=2x}

\mathsf{3x^2-2x-8=0}

\mathsf{3x^2-6x+4x-8=0}

\mathsf{3x(x-2)+4(x-2)=0}

\mathsf{(3x+4)(x-2)=0}

\mathsf{3x+4=0\;\;\;\;(or)\;\;\;\;x-2=0}

\mathsf{3x=-4\;\;\;\;(or)\;\;\;\;x=2}

\mathsf{x=\dfrac{-4}{3}\;\;\;\;(or)\;\;\;\;x=2}

\therefore\mathsf{Roots\;are\;\dfrac{-4}{3},\;2}

Answered by NITESH761
1

Step-by-step explanation:

\sf We \: have,

\sf 3x-\dfrac{8}{x}=2

\sf : \implies \bf{\dfrac{3x^2-8}{x}=2}

\sf : \implies \bf{3x^2-8=2x}

\sf : \implies \bf{3x^2-2x-8=0}

\sf : \implies \bf{3x^2-6x+4x-8=0}

\sf : \implies \bf{3x(x-2)+4(x-2)=0}

\sf : \implies \bf{(3x+4)(x-2)=0}

\sf : \implies \bf{\underline{\boxed{ \sf x=-\dfrac{4}{3}}} \quad or \quad \underline{\boxed{ \sf x=2}}}

Similar questions