Physics, asked by lilsupah305, 11 months ago

Find the speed of the electron in the ground state of a hydrogen atom. The description of ground state is given in the previous problem.

Answers

Answered by jit71
1

Explanation:

what is the formula to find the electron in the ground state of hydrogen

Answered by shilpa85475
23

Explanation:

Step 1:

Given data in question  

distance between the two charges, r=0.53 \mathrm{A}=0.53 \times 10^{-10} \mathrm{m}

Using Coulomb's Law, force,

F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}    

q_{1}=q_{2}=e

=9 \times 10^{9} \times \frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{\left(0.53 \times 10^{-10}\right)^{2}}  

=9 \times 10^{9} \times \frac{2.56 \times 10^{-38}}{\left(0.53 \times 10^{-10}\right)^{2}}

=\frac{23.04 \times 10^{-29}}{0.2809 \times 10^{-20}}

=8.2 \times 10^{-8} \mathrm{N}

Step 2:

Mass of an electron is \left(M_{e}\right)=9.12 \times 10^{-31} \mathrm{kg}

Colombian Force provides the necessary centripetal force.

F_{e}=\frac{m_{e} v^{2}}{r}  

8.2 \times 10^{-8}=\frac{9.12 \times 10^{-31} \times v^{2}}{0.53 \times 10^{-10}}    

8.2 \times 10^{-8} \times 0.53 \times 10^{-10}=9.12 \times 10^{-31} \times v^{2}

4.346 \times 10^{-18}=9.12 \times 10^{-31} \times v^{2}  

v^{2}=0.4775 \times 10^{13}

v^{2}=4.775 \times 10^{12}

Step 3:

Squaring on both sides, we get

v=\sqrt{4.775 \times 10^{12}}

v=2.18 \times 10^{6} \mathrm{m} / \mathrm{s}

Similar questions