Math, asked by mukesh7381, 1 year ago

find the square root of 24336 by prime factorization

Answers

Answered by Nisha2636
175
Thanks for your question.
Attachments:
Answered by payalchatterje
1

Answer:

The square root of 24336 is 156.

Step-by-step explanation:

Given digit is 24336.

Here we want to find square root of 24336.

By prime factorization

24336 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 13 \times 13 =  {2}^{4}  \times  {3}^{2}  \times  {13}^{2}

Now, square root of 24336

 =  \sqrt{24336}  \\  =  \sqrt{{2}^{4}  \times  {3}^{2}  \times  {13}^{2} }  \\  =  ({{2}^{4}  \times  {3}^{2}  \times  {13}^{2} )}^{ \frac{1}{2} }  \\  =  {2}^{2}  \times 3 \times 13 \\  = 156

Required square root of 24336 is 156.

List of Square values upto 30,

{1}^{2}  = 1 \\  {2}^{2}  = 4 \\  {3}^{2}  = 9 \\  {4}^{2}  = 16 \\  {5}^{2}  = 25 \\  {6}^{2}  = 36 \\  {7}^{2}  = 49 \\  {8}^{2}  = 64 \\  {9}^{2}  = 81 \\  {10}^{2}  = 100 \\  {11}^{2}  = 121 \\  {12}^{2}  = 144 \\  {13}^{2}  = 169 \\  {14}^{2}  = 196 \\  {15}^{2}  = 225 \\  {16}^{2}  = 256 \\  {17}^{2}  = 289 \\  {18}^{2}  = 324 \\  {19}^{2}  = 361 \\  {20}^{2}  = 400 \\  {21}^{2}  = 441 \\  {22}^{2}  = 484 \\  {23}^{2}  = 529 \\  {24}^{2}  = 576 \\  {25}^{2}  = 625 \\  {27}^{2}  = 729 \\  {28}^{2}  = 784 \\  {29}^{2}  = 841 \\   {30}^{2}  = 900

Similar questions