Math, asked by ramkiranyadav, 1 year ago

find the square root of 9 + 2 root 20​

Answers

Answered by gayatrikumari99sl
0

Answer:

The square root of \sqrt{9 + 2\sqrt{20}} is (\sqrt{5}  + \sqrt{4} )^

Step-by-step explanation:

Explanation:

Given in the question that, 9 + 2\sqrt{20}

According to the question we need to find out the square root of 9 + 2\sqrt{20}.

And 9 + 2\sqrt{20} can be written as

9 + 2\sqrt{20} = (\sqrt{5})^2  + (\sqrt{4} )^2+ 2 .(\sqrt{5} )\sqrt{4}

9 + 2\sqrt{20} =   (\sqrt{5}  + \sqrt{4} )^2

Verify:

Where (\sqrt{5}  + \sqrt{4} )^2 = (\sqrt{5})^2  + (\sqrt{4} )^2+ 2 .(\sqrt{5} )\sqrt{4}

(\sqrt{5}  + \sqrt{4} )^2 = 5 + 4 + 2\sqrt{20}

(\sqrt{5}  + \sqrt{4} )^2 = 9 + 2\sqrt{20}

Now, according to the question, the square root of  9 + 2\sqrt{20}

\sqrt{9 + 2\sqrt{20}} = \sqrt{(\sqrt{5}  + \sqrt{4} )^2}

⇒  \sqrt{9 + 2\sqrt{20}}  =   (\sqrt{5}  + \sqrt{4} )^

Final answer:

Hence, the square root of \sqrt{9 + 2\sqrt{20}} is (\sqrt{5}  + \sqrt{4} )^

#SPJ2

Answered by Pratham2508
0

Answer:

The square root of the given equation is (\sqrt{5} +\sqrt{4} )

Explanation:

Given:

Equation - 9+2\sqrt{20}

To Find:

The square root of the equation i.e. 9+2\sqrt{20}

Solution:

9+2\sqrt{20}(Given)

We need to find it's square root, making it as \sqrt{9+2\sqrt{20} }

Changing the equation by splitting it,

9+2\sqrt{20} = (\sqrt{5} )^{2} + (\sqrt{4} )^{2} + 2(\sqrt{5} )(\sqrt{4} )

9+2\sqrt{20} = (\sqrt{5} )^{2} + (\sqrt{4} )^{2} + 2*\sqrt{5}*\sqrt{4}

9+2\sqrt{20} = (\sqrt{5} +\sqrt{4} )^{2}

According to the question and the earlier equation we need to solve or simplify, \sqrt{9+2\sqrt{20} }

Thus, =\sqrt{ (\sqrt{5} +\sqrt{4} )^{2}}

\sqrt{9+2\sqrt{20} }=\sqrt{5} +\sqrt{4}.

Therefore, the square root of the equation provided to us is \sqrt{5} +\sqrt{4}

Verification:

(\sqrt{5} +\sqrt{4})^2=(\sqrt{5} )^2+(\sqrt{4} ^2)+2*\sqrt{5} *\sqrt{4}

(\sqrt{5} +\sqrt{4})^2=5+4+2\sqrt{20}

(\sqrt{5} +\sqrt{4})^2=9+2\sqrt{20}

#SPJ2

Similar questions