Math, asked by navadeepu105, 3 months ago

find the square root of
11 + 2 \sqrt{30}
Plz Tell me the right Answer ​

Answers

Answered by mathdude500
3

\large\underline{\bold{Given\:Question-}}

 \sf \: Find :  \:  \sqrt{11 + 2 \sqrt{30} }

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\: \sqrt{11 + 2 \sqrt{30} }

can be re-written as

 \rm \:  \:  =  \:  \:  \sqrt{6 + 5 + 2 \sqrt{6 \times 5}}

 \rm \:  \:  =  \:  \:  \sqrt{ {( \sqrt{6})}^{2} +  {( \sqrt{5} )}^{2} + 2 \sqrt{6} \times  \sqrt{5}}

We know,

 \boxed{ \sf \:  {x}^{2} +  {y}^{2} + 2xy =  {(x + y)}^{2}}

So, using this identity, the above step can be rewritten as

 \rm \:  \:  =  \:  \:   \sqrt{ {\bigg( \sqrt{6}   +  \sqrt{5} \bigg) }^{2} }

 \rm \:  \:  =  \:  \:  \sqrt{6}  +  \sqrt{5}

\bf\implies \: \sqrt{11 + 2 \sqrt{30}}  =  \sqrt{6}  +  \sqrt{5}

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions