Math, asked by MrUnknown9851, 5 days ago

Find the square roots of 15−8i

Easy... ​

Answers

Answered by anindyaadhikari13
6

Solution :-

We have to evaluate the square root of 15 - 8i

 \rm =  \sqrt{15 - 8i}

The above expression can be written as :-

 \rm =  \sqrt{15 - 2 \times 4 \times i}

 \rm =  \sqrt{16 - 1 - 2 \times 4 \times i}

We know that :-

 \rm \longrightarrow {i}^{2} =  - 1

Therefore, the expression becomes :-

 \rm =  \sqrt{16 +  {i}^{2} - 2 \times 4 \times i}

 \rm =  \sqrt{ {(4)}^{2}  +  {(i)}^{2} - 2 \times (4 )\times (i)}

The expression is in the form a² - 2ab + b² :-

 \rm =  \sqrt{ {(4 - i)}^{2} }

 \rm =  4 - i

Which is our required answer.

Answer :-

 \rm \hookrightarrow \sqrt{15 - 8i}  = 4 - i

Learn More :-

Algebraic Identities.

  • (a + b)² = a² + 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
Similar questions