Math, asked by payalgond1649, 1 year ago

Find the sum of first 20 terms of an ap in which the 3rd term is 7 and 7th term is two more than the thrice of its 3rd term

Answers

Answered by vaishuu
8
here is your answer.......
I hope this helps you
if you lyk than plz brainliest my answer dear friend
Attachments:
Answered by SarcasticL0ve
10

☯ Let a be the first term of AP and d be the common difference of the given A.P.

\\

Here,

  • 3rd term of AP is 7
  • 7th term is two more than the thrice of its 3rd term

\\

{\underline{\frak{We\;have}}} \begin{cases} & \text{$ \sf a_3 = 7$}  \\ & \text{$ \sf a_7 = 3a_3 + 2$}  \end{cases}

\\

We have to find, The sum of 20 terms of an A.P.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\quad\qquad\star\;{\boxed{\sf{\purple{a_3 = 7}}}}\\ \\

\:  \:  \:  :\implies\sf a + 2d = 7\\ \\

\:  \:  \:  :\implies\sf a = 7 - 2d\qquad\qquad\bigg\lgroup\bf eq\:(1)\bigg\rgroup\\ \\

Now,

\quad\qquad\star\;{\boxed{\sf{\purple{a_7 = 3a_3 + 2}}}}\\ \\

:\implies\sf a + 6d = 3[a + 2d] + 2\\ \\

 \:  \: :\implies\sf a + 6d = 3a + 6d + 2\\ \\

 \:  \: :\implies\sf a + \cancel{6d} = 3a + \cancel{6d} + 2\\ \\

 \qquad \quad:\implies\sf a = 3a + 2\\ \\

 \qquad \quad:\implies\sf a - 3a = 2\\ \\

 \qquad \quad \:  \: :\implies\sf - 2a = 2\\ \\

 \qquad \quad \: :\implies\sf a = - \cancel{ \dfrac{2}{2}}\\ \\

 \qquad \quad :\implies{\boxed{\frak{\pink{a = -1}}}}\; \bigstar\\ \\

\star\;{\underline{\frak {Putting\;value\;of\;a\;in\;eq\;(1),}}}\\ \\

\qquad \:  \:  \:  \:  \: :\implies\sf a = 7 - 2d  \\  \\

\qquad \:  \:  \: :\implies\sf -1  = 7 - 2d \\  \\

\qquad:\implies\sf -1  - 7 = - 2d \\  \\

\qquad \:  \:  \:  \:  \:  \: :\implies\sf - 8 = - 2d \\  \\

\qquad \:  \:  \:  \:  \:  \:  \: :\implies\sf d = \cancel{ \dfrac{-8}{-2}} \\  \\

\qquad \:  \:  \:  \:  \:  \:  \: :\implies{\boxed{\frak{\pink{d = 4}}}}\; \bigstar \\  \\

⠀⠀⠀━━━━━━━━━━━━━━━━

☯ We have to find, sum of 20th term of A.P. So,

\dag\;{\underline{\frak{We\;know\;that,}}}\\ \\

 \qquad \quad\star\;{\boxed{\sf{\purple{S_n = a + \dfrac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup}}}}\\ \\

:\implies\sf S_{20} = a + \dfrac{20}{2} \bigg\lgroup\sf 2 \times -1 + (20 - 1) \times 4 \bigg\rgroup\\ \\

 \qquad \quad \:  \: :\implies\sf S_{20} = 10 \bigg\lgroup\sf - 2 + 19 \times 4 \bigg\rgroup\\ \\

 \qquad \quad \:  \: \:  \:  \:  \:  \: :\implies\sf S_{20} = 10 \bigg\lgroup\sf - 2 + 76 \bigg\rgroup\\ \\

 \quad \quad \qquad \qquad:\implies\sf S_{20} = 10 \bigg\lgroup\sf 74 \bigg\rgroup\\ \\

 \quad \quad \qquad \qquad \:\: :\implies{\boxed{\frak{\pink{S_{20} = 740}}}}\; \bigstar\\ \\

\therefore\;{\underline{\sf{20th\;term\;of\;A.P.\;is\;\bf{740}.}}}

Similar questions