Math, asked by kaifmansuri11196, 5 months ago

find the sum of the first 22 terms of the AP:9,17,25...​

Answers

Answered by Anonymous
2

\huge\tt\colorbox{pink}{Answer}

a = 9

d = a2 - a1

d = 17 - 9

d = 8

n = 22

Sn = n/2{2a + (n - 1) d}

S22 = 22/2 {2(9) + (22 -1 ) 8}

S22 = 11 {18 + 168 }

S22 = 11 (186)

S22 = 2046

Answered by MrHyper
5

\huge\purple{\textbf{\textsf{Question:}}}

 \bf Find \: the \: sum \: of \: the \: first \: 22  \\  \bf terms \: of \: the \: AP : 9, \:  \:  \: 17, \:  \:  \: 25...

\huge\purple{\textbf{\textsf{Answer:}}}

 \bf Given :  \\  \bf a1 = 9  \bf \:  \:  \:  \:  \:  a2 = 17 \\  \bf d = a2 - a1 = 17 - 9 \\  \bf \therefore d = 8 \\  \bf n = 22 \\  \\  \bf Formula \: to \: find \: the \: sum \: of \\  \bf first \: ‛n’ \: terms \: of \: an \: AP :  \\  \\  \bf S_n =  \frac{n}{2} [2a + (n - 1)d] \\  \\ \bf \implies S_{22} =  \frac{22}{2} [2(9) + (22 - 1)8 \: ] \\   \\  \bf \implies S_{22} = 11[18 + (21)8 \: ] \\  \bf \implies S_{22} = 11(18 + 168) \\  \bf \implies S_{22} = 11(186) \\  \bf \therefore S_{22} =  \underline{ \underline{2,046}}

\huge\purple{\textbf{\textsf{Hope~it~helps..!!}}}

Similar questions